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We consider a disturbance that evolves from a strictly linear finite-growth-rate 
instability wave, with nonlinear effects first becoming important in the critical layer. 
The local Reynolds number is assumed to be just small enough so that  the spatial- 
evolution, nonlinear-convection, and viscous-diffusion terms are of the same order of 
magnitude in the interactive critical-layer vorticity equation. The numerical results 
show that viscous effects eventually become important even when the viscosity is 
very small due to continually decreasing scales generated by the nonlinear effects. 
The vorticity distribution diffuses into a more regular pattern vis-a-vis the inviscid 
case, and the instability-wave growth ultimately becomes algebraic. This leads to a 
new dominant balance between linear- and nonlinear-convection terms and an 
equilibrium critical layer of the Benney & Bergeron (1969) type begins to emerge, but 
the detailed flow field, which has variable vorticity within the cat’s-eye boundary, 
turns out to be somewhat different from theirs. The solution to this resealed problem 
is compared with the numerical results and is then used to infer the scaling for the 
next stage of evolution of the flow. The instability-wave growth is simultaneously 
affected by mean-flow divergence and nonlinear critical-layer effects in this latter 
stage of development and is eventually converted to decay. The neutral stability 
point is the same as in the corresponding linear case, however. 

1. Introduction 
Time-periodic excitation of (convectively unstable) free shear layers between 

parallel streams produces spatially growing instability waves that are initially 
governed by linear dynamics if the excitation amplitude is sufficiently small. While 
the amplitude continues to increase as the instability wave propagates downstream, 
its local growth rate must ultimately decrease owing to viscous spreading of the mean 
shear layer. Nonlinear effects can then become important in a critical layer a t  the 
transverse position where the phase velocity of the instability wave equals the mean 
velocity (once the instability-wave amplitude and growth rate become sufficiently 
large and small, respectively). The unsteady critical-layer motion is then governed 
by a nonlinear vorticity equation, while the flow outside the critical layer remains 
essentially linear. 

The external instability-wave amplitude is completely controlled by the nonlinear 
dynamics of the critical layer, however. Goldstein & Leib (1988, hereinafter referred 
to as I) considered the case where the critical-layer vorticity equation represents a 
balance of spatial-evolution and (linear and nonlinear) convection terms. They show 
that this type of nonlinear critical layer occurs a t  the downstream position where the 
deviation of the local-thickness Strouhal number, or normalized frequency, from its 
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neutral value is O(&),  where e is the local instability-wave amplitude. The local 
Reynolds number R was assumed to be large enough so that viscous effects were 
unimportant in their analysis. The nonlinear effects then cause the instability wave 
to saturate well upstream of the linear neutral stability point, but with the final 
instability-wave amplitude oscillating about a finite non-zero value. It is unclear 
whether or not the ‘outer’ instability wave will reach a final equilibrium state. 
However, their numerical solutions clearly show that the critical-layer vorticity does 
not tend to a steady limit but continues to  develop successively smaller lengthscales. 
Stewartson (1978) and Warn & Warn (1978) showed that spatially periodic Rossby- 
wave critical layers exhibit similar behaviour when they evolve in time. Stewartson 
(1978, 1981) concluded that even a very small viscosity would cause this latter type 
of critical layer to develop into an equilibrium critical layer of the Benney & 
Bergeron (1969) type, which has constant vorticity in the region of closed streamlines, 
the so-called Kelvin’s cat’s-eye. 

A major purpose of the present investigation is to determine whether or not this 
hypothesis holds for spatially growing instability waves on shear layers between 
parallel streams by incorporating a small amount of viscosity into the analysis of I. 
The local Reynolds number R is here assumed to be just large enough so that the 
viscous-diffusion term is of the same order of magnitude as the spatial-evolution and 
nonlinear-convection terms in the critical-layer vorticity equation used in I .  This 
corresponds to the Haberman (1972) scaling R = O ( E - ~ ) .  The relative importance of 
viscous to nonlinear effects in the critical layer is then determined by the Haberman 
parameter, A = l/e:R, while viscous effects play a purely passive role outside the 
critical layer. 

Our analysis is related to that of Huerre & Scott (1980) but differs from i t  in at 
least one very important respect ; namely, their critical layer is always an equilibrium 
critical layer (where the dominant balance is between linear-, i.e. mean-flow-, and 
nonlinear-convection effects) while ours is not. The important consequence is that 
Huerre & Scott’s lowest-order instability-wave growth rate is much smaller than 
ours, O(& as opposed to O(ei), and is determined by the equilibrium (i.e. negligible 
growth rate) dynamics of Haberman (1972) rather than by non-equilibrium critical- 
layer dynamics as in the present investigation (where the dominant balance is 
between the growth-rate effects and the linear- and nonlinear-convection effects). It 
is also important to notice that Huerre & Scott (1980) had to  impose an artificial 
body force to maintain parallel flow. This precludes the possibility of matching the 
solution onto the weakly non-parallel linear solution and, consequently, of imposing 
appropriate upstream boundary conditions, which is an important feature of the 
present analysis as well as that  of I. 

Our computations show the vorticity roll-up to be initially similar to the inviscid 
calculations of I, even when the scaled Haberman parameter (defined more precisely 
below) is z 1,  but viscous effects eventually assert themselves and cause the 
vorticity distribution to diffuse into a much simpler pattern (more characteristic of 
an equilibrium critical layer) once the nonlinear effects have had time to generate 
sufficiently small scales. 

The instability-wave growth rate is always proportional to the phase jump across 
the critical layer ; the latter being equal in the linear viscous and linear inviscid cases. 
Nonlinear effects drive the phase jump, and consequently the growth rate, toward 
zero (Gajjar & Smith 1985; Goldstein & Durbin 1986; Goldstein, Durbin & Leib 
1987; Goldstein & Leib 1988). The present result shows that viscosity keeps the 
critical-layer phase jump from vanishing entirely and thereby has the rather 
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unexpected effect of allowing the instability wave to continue its growth 
asymptotically far downstream rather than saturating, as it appears to do in the 
inviscid case considered in I. 

The resulting growth is admittedly very weak compared to the initial growth - 
being algebraic as opposed to exponential. This, however, still produces an 
unbounded increase of the nonlinear terms in the critical-layer vorticity equation so 
that a new dominant critical-layer balance between linear- and nonlinear-convection 
terms is eventually achieved. This is the situation that was analysed by Benney & 
Bergeron (1969). The lowest-order vorticity equation in this asymptotic region is 
equivalent to theirs, but it only determines the overall ‘shell’ of the solution. The 
detailed vorticity distribution is determined by a secularity condition and the 
transverse boundary conditions. The specific result turns out to be somewhat 
different from that of Benney & Bergeron (1969) and has variable vorticity in the 
closed-streamline region within the cat’s-eye boundary. In  this sense Stewartson’s 
(1978, 1981) conjecture turns out to be incorrect for the present flow. 

Benney & Bergeron (1969) invoked the Prandtl-Batchelor theorem (Batchelor 
1956) to justify their assumption of constant cat’s-eye vorticity. But this theorem 
assumes that the flow is no longer evolving or is evolving slowly enough from its 
initial state so that viscous effects have time to fully act  on the motion ~ which is not 
the case in the present situation. Similar considerations may have led Stewartson 
(1981) to argue for constant vorticity from the fact that  the variable-vorticity 
solution becomes logarithmically singular at the centre of the cat’s-eye in the 
Benney-Bergeron scenario. Variable cat’s-eye vorticity is an intrinsic attribute of 
the present solution, but the problem also possesses eigenfunctions that exhibit 
logarithmic singularities at the centre of the cat’s-eye. However, the critical-layer 
vorticity equation has to be rescaled in this region (which brings back the viscous 
term) and the rescaled equation possesses a solution that remains bounded at the 
cat’s-eye centre and matches (in the matched asymptotic expansion sense) onto any 
logarithmically singular solution that may exist outside this region. This means that 
the singular property cannot, in itself, be used to preclude the singular eigensolutions. 
However, a generalized Prandtl-Batchelor theorem, obtained from our non- 
equilibrium critical-layer vorticity equation, precludes the singular eigensolutions 
and yet allows variable cat’s-eye vorticity. 

The asymptotic weak algebraic growth of the instability wave allows the mean- 
flow divergence effects to alter the critical-layer structure before the instability wave 
achieves an O( 1)  amplitude. The analytical solution of the rescaled problem for this 
next stage of evolution shows that the critical level moves across the shear (cf. 
Bodony, Smith & Gajjar 1983; Gajjar & Smith 1985) to maintain the quasi- 
equilibrium state against changes in mean flow. The resulting instability-wave 
growth is, therefore, simultaneously affected by mean-flow divergence and nonlinear 
critical-layer effects. The growth rate eventually goes to zero and the instability 
wave begins to decay. We show that the nonlinear effects have a strong influence 
on the maximum instability-wave amplitude but do not alter the location of the 
neutral stability point. 

The problem is formulated in $2, where we show how the nonlinear critical layer 
gradually evolves from the strictly linear finite-growth-rate viscous solution and that 
there exists an overlap domain where these two solutions match (in the matched 
asymptotic expansion sense). We then indicate how the analysis of I can be modified 
to obtain the flow outside the critical layer. The critical-layer flow is analysed in $3. 
The vorticity satisfies a second-order partial differential equation in that region. This 
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FIGURE 1. Flow structure. 

equation is formally linear, but one of its coefficients depends on the unknown 
amplitude of the instability wave outside the critical layer. The overall problem is, 
therefore, nonlinear (and interactive) and has to be solved numerically. The 
numerical procedure is described in $4. An asymptotic solution to the critical-layer 
vorticity equation that applies a t  large downstream distances is constructed in $ 5 .  
The numerical computations are discussed in $6 and a comparison is made with the 
asymptotic equilibrium critical-layer solution of the previous section. The relevant 
scaling and the solution for the next stage of evolution, where mean-flow divergence 
and nonlinear critical-layer effects both influence the evolution of the instability 
wave, are described in $7.  The behaviour of the critical-layer vorticity a t  the cat's- 
eye centre is discussed in the Appendix. The flow structure is shown in figure 1. 
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2. Formulation and solution outside the critical layer 
As in I, we are concerned with the two-dimensional flow of an incompressible and 

almost inviscid shear layer between two parallel streams with nominally uniform 
velocities U ,  > U,. The streamwise and transverse coordinates ( x  and y),  the timc t ,  
and all velocities are normalized by 8,, & / A ,  and A ,  respectively, where 

0, is the momentum thickness of the unexcited shear layer a t  the origin of the x, y 
coordinates, and 

A = $(U,  - U,) 

is a measure of the velocity difference across the shear layer. 
We also assume that the mean-flow Reynolds number 

where v is the kinematic viscosity, is large enough and that the amplitude of the 
unsteady motion is small enough so that the mean flow is nearly parallel and the 
shear layer width - a t  least initially - increases only slowly over the long viscous 
scale 

x3 = x / R .  (2.4) 

[Note the slight change of notation from I - x 2  will be introduced later as an 
intermediate scale.] As in I, the origin of the x ,  y coordinates is chosen so that the 
deviation, 

dS, = s-s, < 0,  (2.5) 

of the local Strouhal number S (the excitation angular frequency normalized by 
A / & )  from its neutral value S,, as predicted by linear inviscid parallel flow 
stability theory, is O(ei), where c is a measure of the corresponding local 
instability-wave amplitude. 

The shear-layer motion is again governed by the two-dimensional vorticity 
equation 

where w = VZ$ (2.7) 

is minus the dimensionless vorticity, and $ is the stream function; V2 is the 
Laplacian with respect to t and y, 

is the Jacobian with respect to 5 and y of w and $; and 

6 = x - u t  (2-8) 

denotes the streamwise coordinate in a reference frame moving with the normalized 

(2.9) average velocity lJ = ( U ,  + U 2 ) / 2 A  

of the two external streams. 
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The analysis of I shows that nonlinear critical-layer effects cause changes in the 
flow on the scale of the slow space and time variables 

1 
2, = €fX (2.10) 

and t ,  = €&. (2.11) 

This scaling remains unchanged even if we require that the Haberman (1972) 
parameter 

h = l/eiR (2.12) 

be O(1) rather than imposing the more restrictive condition (2.11) of I, but viscous 
effects must now be accounted for in the analysis. 

Since the (unexcited) basic-flow velocity U ,  changes only on the slow viscous scale 
(2.4), it is sufficient to use its Taylor series expansion, 

u, = U,(y)+ 2x ,G(y)+ ... = Uo(y)+2€hx,G'(y)+0(€2), (2.13) 

for the purpose of studying its changes on the nonlinear critical-layer streamwise 
lengthscale (2.10). Thus, we only require that the analysis be uniformly valid on the 
faster scale x, but not on the slower scale x3. Variations on this latter scale are 
accounted for by the outer weakly non-parallel solution described in I (see figure 1) .  
U,, is determined by the imposed upstream profile and by the previous slow 
development of the mean flow on the long viscous scale x, = x/R. As in I, we assume 
that 

U ,  = O+tanh y, (2.14) 

which closely corresponds to experimental observations and greatly simplifies the 
analysis. Then the neutral Strouhal number X, is again given by 

so = 0. (2.15) 

As explained in I, the slow variable t ,  will enter the solution only through 

[ =  [-X1tl = x-(O+&)t ,  (2.16) 

which denotes the streamwise coordinate in a reference frame moving with the actual 
phase velocity of the linear instability wave, and the solution outside the critical 
layer expands as 

$ = $,(y) + E $ , + € ~ $ ~ + ~ ~ $ ~ + ~ ~ $ ~ + O ( ~ ~ ) ,  (2.17) 

where the $'nlz for n 2 2 are functions of 6 and y and the slow variable xl. $,, is related 
to the zeroth-order term in the mean-flow Taylor-series expansion (2.13) by 

U ,  = u+-. W O  
dY 

The first few $Cnlz are governed by 

9 0 $ 1 =  0, 

(2.18) 

(2.19) 

9,*;=-91$Ilr,+hU"', (2.20) 

(2.21) 
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where (2.23) 
a 

Yo = ( U V 2 - U ) -  
K' 

-s1-+u0- v2+ 2u--u" -, 
- . I = (  ag a ax, " 1  ( :; 12, 

I 
r, = (3u+2O)--2s1- 2 ax, a ag agax, ' 

ax, a ag '1 agax, "+$ + ( Uo--S12)%, ,",, ag ax; (2.26) 

[ 
rg= (3u+2U)---2s1- - 

(2.24) 

(2.25) 

and U = tanh y have been introduced ; V2 now denotes the Laplacian with respect to 
5 and y. 

The first-order term $l is no longer just the linear instability wave solution as in 
I but is now the sum of the mean-flow change corresponding to the second term in 
(2.13) and the previous solution, i.e. 

+l = @f"' (y, x l )  + sech yRe[At(xl) eic], (2.27) 

The spatial growth of this wave is determined by the slowly varying amplitude 
function At which, along with the mean flow change @"), is ultimately determined 
by the second- and third-order problems. 

Since the flow is still basically inviscid outside the critical layer, and since the 
phase jumps across the inviscid and viscous linear-growth critical layers are equal, 
A t  must exhibit the same behaviour as X,+-CO as in I, viz. 

where 

The higher are of the form 
m 

(y,x,)  eimc] for n = 3 , 4  ,... , 

(2.28) 

(2.29) 

(2.30) 

with the formulas for 
the mean-flow term @io) now satisfies 

for m = 0 , 1 , 2 ,  ... and @im) for m > 1 being those of I, but 

(2.31) 

It is sufficient to take (see 2.13), (2.17), and (2.27) 

@f') = Ax, U o ( l  $dy+2cj0) (2.32) 

where G(y) = tanh y - (0 + tanh y) (2.33) 

and the constant cia) is determined by the global mean-flow variation. 
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@f') is now determined by (3.29) of I with 

h2X: G"'(y) (2.34) 

added to the right-hand side. Since our interest here is primarily in the critical-layer 
flow we need only determine the contribution of (2.29) to the behaviour of @y) a t  the 
origin, i.e. y = 0. It clearly contributes a term of the form 

h 2 X ;  c p ,  (2.35) 

where cia) is a (possible zero) real constant. @!jl) is determined by (3.27) of 1 with 

(2.36) 

added to the right-hand side. While @p) is now somewhat different) from the @?) 
of I, i t  still behaves like (3.32) of I as y+O. 

3. The critical layer 
The analysis of the previous section was primarily carried out to determine the 

behaviour of the viscous outer solution in the neighbourhood of the critical layer (see 
figure 1). As in I, we introduce the scaled transverse coordinate 

Y = y/& (3.1) 

into the solution (2.17) and re-expand with the inner variable Y held fixed. 
The result is again given by (4.2) of I with the mean-flow correction 

2ehx, cyu + 2e%x1 cp' Y - e2(hx, Y 2 / u  - h2X2 1c2 (") ) (3.2) 

added to the right-hand side. 
The critical-layer stream function y? also here expands as 

Y = e ~ ~ + ~ f y / , + e 2 l n , t Y , ~ + e ~ Y ~ +  ... , (3.3) 

where the Y, are functions of 5, Y,and x1 only. !Po to YZL are given by (4.6) to (4.8) 
of I, but with 2hx, c?)u and 2hxl c y ) Y  added to the right-hand sides of the first two 
equations, respectively. Y, is now determined by the viscous critical-layer vorticity 
equation 

P)Q1 = hQ 1 Y Y  (3.4) 

- a  a a 
ac ay 

2(') = U - + ( Y - ~ , ) - - R ~ ( I A ~  e'c)-. where, as in I, 
ax, 

(3 .5)  

The O ( E )  vorticity perturbation in the critical layer, -Q,, is related to Y, through 

YZYY = Ql - YoCc = 9, + Re (At epic). (3.6) 

and the total critical-layer vorticity is given by - (1 + ~ 9 , )  + O($). 
In the present case, it is convenient to define Q' by 

Q, = -P-2hxl /0-2Re(At e'c)+Qt (3.7) 

rather than by (4.17) of I. Consideration of the dominant balance as I Y I + m of (3.4), 
with (3.7), shows that Qt still has the asymptotic behaviour given by (4.22) of I .  The 
error term R, is still 0(Yp3) ,  but, of course, is no longer given by (4.23) of I. 
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Integration of (3.6) with rcspect to Y from -M to M ,  letting M +  a, and using the 
inner limit of the outer solution again produces the matching condition (4.25) of I. 
By then, using (3.20) of I, it follows that Qt as before satisfies the jump condition 

(3.8) 

Moreover, it is again convenient to introduce the resealed variables (4.26)-(4.32) 
of I, i.e. 

Q = Qt/8t 0, (3.9) 

A = 4At eiXo/8; 02, 

'I = -2(Y-81)/A!310, 

x = c-x, ,  
x = -8,X,/2-X0, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

X, = -KixO-argA& (3.15) 

Then it follows from (2.28), (2.29), and (3.4)-(3.8) that Q and A satisfy the scaled 
critical-layer vorticity equation 

subject to the upstream boundary condition 

A+eKx as x + - m  (3.17) 

along with the transverse boundary condition 

and the transverse jump condition 

dA 
dz 

e-ixQdXdy = i-, (3.19) 

where we have put A = 8h/( -8, D ) 3 .  (3.20) 

It follows from (2.29) and (3.17) that the third (i.e. the nonlinear) term on the lcft- 
side of (3.16) drops out as P+-  co and, consequently, that 

&+Re[K(i/h)iq(z) e*bfiX] as z-t-co, (3.21) 

where z = (i/A)i('I-iK), (3.22) 

and q satisfies the inhomogeneous Airy's equation 

(3.23) 

subject to  the integral constraint 

qdz = i. 1:: (3.24) 
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q = Gi(z)+iAi(z), (3.25) 

where Gi is the particular solution of (3.23) defined on p. 448 of Abramowitz & Stegun 
(1964). This is the usual solution for the vorticity in the linear viscous-growth critical 
layer. [rSI_&rlXdp = 0 (3.26) 

must also be satisfied in the present situation, which we show to be the case in the 
next section. 

4. Numerical computation 
The nonlinear evolution equations (3.15)-(3.20) must, of course, be solved by 

numerical methods. Since Q is periodic in X, it can be expanded in a Fourier 
series 

(4.1) 
1 "  

& = 2  C Qn(Z,y)einx, Q-, = Q,*% 
n=-w 

where the asterisk denotes the complex conjugate. Substitution of (4.1) into the 
evolution equations (3.16)-(3.21) leads to 

- A Q , - ~ )  - A __ = &,,(?g+iA), 2 dx (4.2) av2 
for n >, 0, where atj is the Kronecker delta tensor, and 

(4.3) 

with the upstream conditions (3.17) and 

Q, -+ S,, K(i/X)iq(z) A as z --f - co. (4.4) 

Equations (4.22) of I, (3.9)-(3.12), (4.1) and (4.2) show that as y --f co 

Q1+-- i(t'dA ----+GI ) +- 1 (Od?l --+i- dA) + O ( Y - ~ ) ,  
y 2 d ~  y2 2 d Z  dx 

&, + O(y-,-l), n 2 2. 

Integration of (4.2) with n = 0 and using (4.6) shows that 

Since Qo --f 0 as x --f - co this implies that 

c" Qody=O 
J -m 

and, consequently, that (3.26) is indeed satisfied. 

(4.5) 

(4.6) 

(4.7) 

(4.9) 
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Rather than mapping the infinite domain - co < 7 < + co into a finite region, 
equation (4.2) is solved over a finite range, say -M < '1 < M ,  and the asymptotic 
behaviour of Q, (4.5)-(4.7), is used to set the boundary conditions. The integral over 
the infinite domain in (4.3) is approximated using a technique analogous to the one 
developed by Haynes (1985). The resulting formula for dA/dx, involving only 
integrals over a finite interval, reads 

where (4.11) 

The 7-derivatives in (4.2) were discretized using central-difference approximations 
and Simpsons' rule was used for the integrals in (4.10). The solution of (4.10) and (4.2) 
was marched forward in x through a predictor-corrector procedure. A third-order 
scheme was used for (4.10). The predictor step for (4.2) consisted of a second-order 
Adams-Bashforth approximation for the nonlinear and inhomogeneous terms and 
the Crank-Nicholson (second-order implicit) approximation for the mean-flow 
convection and the viscous terms. The corrector step was fully of the Crank- 
Nicholson type. Thomas' algorithm was used to solve the resulting finite-difference 
approximation of (4.2) in both steps. The combined corrector steps for (4.10) and 
(4.2) was then iterated until the solution a t  the next streamwise station had been 
obtained to within a preset tolerance. 

5. The limiting form of the critical-layer vorticity 
In  this section, we derive an asymptotic solution to the boundary-valuc problem 

(3.16)-(3.19) that is valid in the limit as the slow streamwise variable x becomes 
infinite. The numerical results, which are discussed much more fully in $6 below, 
show that, no matter how small the viscous parameter h ,  the amplitude A eventually 
exhibits algebraic growth as hx becomes large. This produces an increase in the 
critical-layer width on the order of a: and a transverse shift in its location by an 
amount 0' = d@/dx, where a = I A 1 and the phase 0 is defined by 

A = a e-iQ. (5.1 1 

That, in turn, suggests the introduction of the new rescaled variables 

x = x-@(X), (5.2) 

?j = ('1 -@')/a:, (5.3) 

Q = &/a: (5.41 

into (3.16), (3.19), and (3.26). The polar form (5.1) for the complex amplitude A and 
the shifted streamwise variable X are used to simplify the analysis. The 
transformation (5.3) ensures that the shifted and rescaled transverse coordinate 1 
remains centred within the critical layer and continues to scale with the critical-layer 
width. Finally, thr scaling (5.4) is chosen so that the dominant inhomogeneous term 
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appears in the lowest-order equation. The rescaled nonlinear evolution equations 
become 

where the prime now denotes differentiation with respect to x. The two terms on the 
right-hand side of (5.6) correspond to the velocity jump and the phase jump across 
the critical layer, respectively ; and (5.7) is the mean-flow jump condition. 

The left-hand side of (5 .5)  is the convective derivative of Q along the 'zeroth-order 
streamlines' $5 = constant, where 

$5 = ? 2 + 2  cosx.  (5.8) 

These streamlines have the familiar Kelvin's cat's-eye pattern with closed 
streamlines inside the cat's-eye boundary $5 = 2 and open streamlines outside. 

The overall structure of the asymptotic solution is rather complicated but many 
of its features have already been considered by Benney & Bergeron (1969), Brown & 
Stewartson (1978), Smith & Bodonyi (1982), and others in the context of equilibrium 
critical layers. The present problem is, however, sufficiently different to require that 
a detailed description of the solution procedure be given. To ease the burden on the 
reader we begin with an overall summary of the various steps involved in the 
analysis. The exact (i.e. the numerical) solution to the original boundary-value 
problem (3.16)-(3.19) (or, equivalently, to the rescaled problem (5.5)-(5.7)) is not 
only continuous but has continuous derivatives to all orders everywhere in the flow. 
It is, on the other hand, possible to construct asymptotic solutions that violate these 
requirements to some degree. The continuity requirement can manifest itself as 
solvability conditions for higher-order problems in the expansion in ways that are 
not always easy to sort out and which can, in any event, introduce considerable 
complexity into the analysis. These complications can be minimized by using the 
unexpanded vorticity equation (5.5) to derive an additional integral constraint, 
which the exact solution will automatically satisfy, but which can be imposed (as an 
additional restriction) on the asymptotic solution to ensure that its higher-order 
terms exhibit proper behaviour. This is done in $5.1 below. 

Much of the complexity of the present analysis is due to the multilayered structure 
of the asymptotic solution (see figure 1). The flow is predominantly inviscid in the 
main layer, where 7 = 0(1), and exhibits different behaviour inside and outside 
the cat's eye. The relevant solution is constructed in $5.2, where the integral 
constraint of $5.1 is used to further restrict its form. The result does not satisfy the 
outer (large-?) boundary condition and an adjustment has to  take place through an 
outer diffusive layer. The relevant scaling for this outer region is described in 55.3 
and an appropriate asymptotic solution is constructed. 

The inner and outer expansions are matched in $5.4 and an appropriate uniformly 
valid composite solution is then constructed. This is done to facilitate the imposition 
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of the integral constraints (5.6) and (5.7). Section 5.5 considers the mean-flow 
constraint (5.7) and the velocity-jump constraint, the latter being the real part of 
(5.6). The phase-jump constraint, i.e. the imaginary part of (5.6), involves a 
contribution from a viscous boundary layer (or internal shear layer) that  forms on 
the cat's-eye boundary to smooth out a discontinuity in the derivative of the inviscid 
solution of $5.2 across that boundary. The boundary-layer solution is briefly 
described in 55.6 and the phase-jump constraint is then imposed. 

These constraints uniquely determine the coefficients in the asymptotic expansion 
for the amplitude a and phase 0 and explicit formulas are given in $5.7. The analysis 
can be carried to higher order and we give the next-order terms in the expansion for 
these quantities, but, without showing the actual derivation. 

5.1. The generalized Prandtl-Batchelor theorem 
Equation (5 .5)  is equivalent to  the two first-order equations 

(5.10) 

where H is a single-valued function of X ,  7 ,  and z. 
Since the integral around a closed streamline, 6 = constant, of the left-hand side 

of the result of adding [(dq/d.Z)i+ 13" times the first equation to [(cu3/dV)$+ 11-i 
times the second is identically zero, the integral on the right-hand side must also 
vanish and it follows that 

where $ denotes an integral around a closed streamline. 
This result can also be obtained by applying the Stokes' integral theorem to the 

integral of (5.5) over the interior of a typical closed streamline. We refer to  it as 
the generalized Prandtl-Batchelor theorem, since we shall use it to determine the 
vorticity in the closed-streamline region. 

5.2.  Asymptotic solution in the central region ?jf = O( 1 )  
We shall seek an asymptotic solution, valid as hz+ 00, by expanding a ,  0', and Q in 
powers (and logarithms) of hz. The numerical results (see 56 below) suggest that 
a - (Ax)?, with 0 < y < g, and 0' - constant as A%+ 00. The lowest-order solution 
imposes no specific restriction on y and the dominant asymptotic form of 0'. 
However, the relevant higher-order solutions can only satisfy the imaginary part of 
the integral constraints (5.6) (i.e. the phase-jump condition) if 0' - &"2-1 as Z+ 00. 
Then, the lowest-order solution cannot satisfy the other integral constraints, i.e. the 
real part of (5.6), (5 .7) ,  and (5.11), unless y = f. This is best demonstrated by carrying 
out the solution with y and 0' unrestricted. But that would greatly complicate the 
presentation since several different expansion forms would then have to be 
considered. To avoid this complexity, we set y = f a t  the outset, assume, as the 
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numerical solution suggests, that  0' is constant to leading order, and rely on the 
internal consistency of the resulting expansions and its good agreement with the 
numerical solution to  justify our choice. We, therefore, seek a solution of the form 

a = a,(hz$[1 +a,(hz)- t+a,(Az)-;+ ... +a6(hz)-l+ ...I,  (5.12) 

0' = el,[l+B,(hz)-~+B,(hz)-++ ...+ o,(hz)-l+ ...I, (5.13) 

Q = [bo,+bl,(hz)-f+b,,(hz)-~+ ...+ b,,(hz)-l+ . . . I  In ("1 (Ax); 
+Qco)+(X~)"Q" '+ (h~) -~Q(z )+  ... +(  hz)- 'Q(@+ ... , (5.14) 

where a,, a,, a, ,..., em, B,, 8, ,..., and b,,, blL, b,, ,... are constants and the Q(n) 

depend on X and q. The term involving the logarithm was introduced to facilitate 
matching with an outer diffusion solution to be discussed below, 

Then Q(O) to &(5) satisfy 

where 6 is defined by (5 .8) ,  the partial derivative with respect to X is a t  constant 6 
in the second member (but not the first), and we have put 

0 
2 

eo = -&-l ,  

0 
en = -elmsn, 2 

n > 0. 

(5.16) 

(5.17) 

Equations (5.15)-(5.17) imply that 

where, except for the requirement 

F(O)+-sgnV e 0 @  as $+ 00 (5.19) 

imposed by (3.18), F(O) to F(5) are, a t  this stage, arbitrary functions of their argument. 
Q(O) is of the same form as the lowest-order solution obtained by Benney & Bergeron 
(1969) for the inviscid equilibrium critical layer. 

The intermediate terms in the expansion Q(l) to & ( 5 )  play no essential role in the 
determination of F ( O ) ,  but &(@ does. The latter quantity is determined by 

(5.20) 

and must satisfy certain periodicity and continuity requirements. Since the 
left-hand side of (5.20) is equal to d(aQ(6)/aX)d and a/aV = 2@/t@, this equation 
can be integrated immediately with respect to X to obtain 
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where 
O a i  

a, = ~ 

6 ’  
0 # > 2  

P = l  cos-1- 6’ -2 < # < 2 .  
2 ’  

(5 .22 )  

(5.23) 

The first term on the right-hand side of (5.21) corresponds to the viscous correction 
obtained by Benney & Bergeron (1969). Unlike &(O) to & c 5 ) ,  the solution (5.21) for 
Qt6) is not periodic outside the cat’s eye and is, in general, discontinuous across 
7 = 0 inside the cat’ eye. It can be made periodic and continuous by requiring that 
F(O) satisfy 

(IF‘O’’ + a ,  I,)’ = 0, (5.24) 

where I ( # )  = J;-@($-2 COSX)~dx, (5.25) 

I,($) = ( - ( # - 2  cosX)f cosxdx .  (5.26) 
J B  

Since 

as #+ 00, the solution to (5.24) that satisfies (5.19) and 

(5.27) 

(5.28) 

is continuous across $ = 2 

(5.30) 

Inserting the expansions (5.12)-(5.14) into the generalized Prandtl-Batchelor 
constrant (5.11), equating coefficients of (AX)-,, and using (5.18), (5.25), and (5.26) 
leads to 

IF(O)‘+a,I, = 0 for -2  < 6 < 2 .  (5.31) 

Inserting (5.30) into (5.31) shows that 

co = 0. (5.32) 

The coefficient of co in (5.30) has a logarithmic singularity at the centre of the cat’s 
eye. Stewartson (1981) argued for constant cat’s-eye vorticity in the Benney- 
Bergeron solution by pointing out that the variable-vorticity solution has a 
similar singularity in that case. However, the Appendix shows that this singularity 
can be eliminated and therefore that the singular behaviour alone cannot be used to 
preclude such solution, which is, of course, why the present approach had to be 
used. 

5.3. The outer diffusion layer 
While the requirement (5.19) is necessary to ensure that Q satisfy the original 
boundary condition (3.18), it  is certainly not sufficient. In fact, (5.4), (5.14), (5.18), 
and (5.27)-(5.29) show that Q does not satisfy this condition, so that Q ( O )  has to be 
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brought to zero through an outer diffusion layer, as suggested by Stewartson (1981) 
(see figure 1) .  The appropriate scaled cross-stream variable in that region is 

?j = (7/-@’)/(lZ)t (5.33) 

Introducing this variable along with (5.1), (5.2),  and (5.4) in (3.16) yields 

When $ = 0(1), the solution to this equation expands like 

2a -1 cos2X--sin2X +..., (5.35) 

P = P ( 0 )  (9) + ( h x ) - W  ($) + . . . , (5.36) 

as h2-t co ; P ( O )  is determined by the solvability condition for the O[(hx)- i ]  
problem 

(5.37) 

where the prime denotes differentiation with respect to the argument. This condition 
follows from the requirement that  the X-independent inhomogeneous terms cancel a t  
that  order. 

Equation (5.37) transforms into Kummer’s equation upon introducing the new 
independent variable 

$ = 1”2. 411 (5.38) 

The solution that vanishes as 6- 00 is, then, given by 

P ( 0 )  = a, I;;, + 6s) e-d U ( Q ,  t, ql), (5.39) 

where the #p denotes the particular solution 

M denotes the Kummer’s function, U(Q, $, 6) ( - 6-i as 4 -t CO) denotes a second 
functionally independent confluent hypergeometric function (Abramowitz & Stegun, 
1964, p. 504), and r denotes the gamma function. It follows that 

- 3  
Fp - - as $+kco, 

443 (5.41) 

#,-lnI$I+D, as $+o,  (5.42) 

where D, = 0.511 19877 ... . Equations (5.41) and (5.42) show that the particular 
solution (5.40) eliminates the logarithmic behaviour of the inner solution and 
converts it into an algebraic decay at infinity. This allows the critical-layer solution 
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to match onto the external solution. I n  fact, (5.1)-(5.4), (5.12), (5.13), (5.33)-(5.36), 
and (5.41) show that the outer diffusive solution matches the external flow to leading 
order, i.e. (4.22) of I is satisfied. 

5.4. Matching and the composite expansion 
Having constructed appropriate inner and outer solutions we must now show that 
they can be matchet in some mutual overlap domain. This leads to conditions on the 
constants b,, bOL, b$), etc that appear in the expansions. In fact, (5.3), (5.12), 
(5.18)-(5.26), (5.33), (5.38), and (5.39) show that the inner and outer expansions 
(5.14) and (5.35), respectively, will match if 

b,, = +,, (5.43) 

where 

(5.44) 

(5.45) 

(see Haberman 1972; Smith & Bodonyi 1982) and 

(5.46) 

The uniformly valid O( 1)  composite expansion corresponding to (5.14) and (5.35) 
can, therefore, be written as 

2C“) = /:(-+-)d$-lnP 21, 1 = 0.58931896 ... . 
I $  

Q = ~ ( 0 )  (6) + e o q  +a, [Pp($) -ln I -D,I +is) e-+ ~ ( i  ’2’  1 +) * -- r(g) n i l  . (5.47) [ -  
5.5. Mean-flow and velocity-change constraints 

Substituting (5.47) into the mean-flow constraint (5.7), noting that the dominant 
contribution to the integral comes from the outer region (i.e. 6 = O(1)) and that, in 
this region, the overlap-domain terms cancel the inner-expansion terms in (5.47), we 
obtain, upon equating O[(A%)-i] terms, 

(5.48) 

Integrating the differential equation for Pp by parts shows that the integral involving 
2, in (5.48) vanishes and, consequently, that  

i‘,O’+b”Y’ = 0. 

Hence, (5.44) and (5.49) show that 

b, = am(C(’) + D,), 

(5.49) 

(5.50) 

(5.51) 
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Substitution of (5 .47)  into the real part of (5 .6) ,  i.e. the velocity-jump constraint, 
equating O(1)  terms, changing the order of integration using (5.8), integrating by 
parts, and again changing the order of integration leads to 

where 

em = 201, C(3), (5.52) 

= 2.72139186 .... (5.53) 

5 .6 .  The cat's-eye boundary layer and the phase-jump condition 

While we have required that Q ( O )  be continuous across the cat's-eye boundary 
$ = 2 ,  its higher derivatives will, in general, be discontinuous, and this induces a 
higher-order viscous boundary layer of the type considered by Brown & Stewartson 
(1978) (see figure 1 ) .  In  fact, i t  follows from (5 .29) ,  (5 .30) ,  and (5.32) that 

F(O) = b , + r ( $ - 2 ) + 0 [ ( $ - 2 ) 2  ln1$-21] as 4 + 2 ,  (5 .54)  

where r = r , = q ; n e o + + O 1 m  for $-ti?+, q 3 0 ,  (5.55) 

r=r-=$am for $ + 2 - .  (5.56) 

To smooth these discontinuities in the first derivative of F(O), we introduce the scaled 
variables 

T = -sgn$i cosiX, (5.57) 

(5.58) 
3 1  

N = t (az ,o)5($-2) ,  

(5.59) 

describing the internal shear layer(s) centred about $ = 2.  To lowest approximation, 
(5 .5)  then becomes the diffusion equation 

(5.60) 

subject to 0 - r N  as ~ ~ ~ - t + c o ,  (5.61) 

in order for its solution to match with (5 .54) .  
The initial conditions at the saddle point T = - 1 are obtained from compatibility 

requirements between the individual solutions for the four cat's-eye boundary layers 
that  come together there (Benney & Bergeron 1969). This leads to  a Wiener-Hopf 
problem that can be reduced to a problem shown by Brown & Stewartson (1978) to 
have a solution. (In contrast, the Wiener-Hopf problem considered by Benney & 
Bergeron (1969) does not possess a solution, Brown & Stewartson (1978)) .  We do not 
pursue these issues further but go on to show how e,  is related to am by considering 
the phase-jump condition, i.e. the imaginary part of ( 5 . 6 ) .  

To this end we first note that 

(5 .62)  



Nonlinear spatial evolution of an externally excited instability wave 313 

where Q, is given by (5.14), is a uniformly valid composite expansion for Q 
everywhere except as 14 1 --f + co. This non-uniformity can be removed, as above, by 
considering the outer diffusive region. However, it  does not effect the present 
development and is, therefore, ignored. 

Substituting (5.14), (5.57), (5 .58) ,  and (5.62) into (5.6) and equating the imaginary 
part to zero we find that the resulting equation is identically satisfied up to (but not 
including) O[(hx)-']. Equating the coeficient of (A%)-' to  zero leads to  an equation 
consisting of the sum of two integrals equalling a constant; one of the integrals 
involves Q6) and the other involves 0. Inserting (5.21) in the first integral, then 
changing the variable of integration from 4 to 6, using ( 5 . 8 ) ,  integrating by parts first 
with respect to X and then with respect to 4, and, for the other integral, changing 
the variables as indicated in (5.57) and (5.58) leads to 

(5.63) 

where H ( N )  is the unit step function. The first term on the left-hand side arises from 
the integral involving Q@). The second term arises from the @integral and involves 
the solution to the boundary-value problem (5.59) and (5.60) which, in turn, depends 
on the parameters Ta and r-. This problem was solved by Brown & Stewartson 
(1978) in the special case where r- = 0. Inspection of their solution shows that terms 
involving r- cancel out in the integral in (5.63), which therefore depends only on 
r, -Ti. In  fact, i t  turns out that this integral exactly cancels the 2xe, term in (5.63) 
(see also Smith & Bodonyi 1982) so that this equation becomes 

5.7. The amplitude and phase coeficients 
We have now shown that the inner and outer asymptotic expansions (5.14) and (5.35) 
satisfy the integral constraints (5.6), (5.7), and (5.11) to the appropriate order as long 
as the amplitude and phase coefficients a ,  and el,, respectively, satisfy (5.52) and 
(5.64). Combining (5.16), (5.22) with these two equations yields 

2 OD el=- 
l+PD' 

(5.65) 

(5.66) 

where D = -C(1)C(3)/4 = 3.7522095 ... . (5.67) 

The other constants in the leading-order solution, i.e. b,,, b,, and 6̂$), can now be 
evaluated for a given value of 0 by using (5.16), (5.22), (5.43), (5 .50) ,  (5.51), (5.65), 
and (5.66). 
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The analysis can be continued to obtain the next-order terms in (5.12) and (5.13). 
We omit the details and give only the final results for a, and O,, i.e. 

where 

(5.68) 

(5.69) 

(5.70) 

6. Numerical results 
The principal result of the previous section is the formulas (5.45) and (5.65)-(5.70) 

giving the numerical values of the coefficients in the asymptotic expansions (5.12) 
and (5.13) of the complex amplitude A = ae-’@ of the leading-order outer instability- 
wave solution, cf. (2.27). Equations (5.12) and (5.65) show that, consistently with 
the Huerre & Scott (1980) equilibrium critical-layer analysis, I A I grows like (Ax):, 
but that the numerical coefficient in our result differs from theirs by a factor of 

Figure 2 shows the numerically computed local (scaled) growth rate, d(ln ( A  I)/da, 
as a function of the scaled (and shifted) streamwise coordinate z for various values 
the viscous parameter h. Also shown are the linear viscous growth rate and the 
inviscid (A = 0) nonlinear growth rate. Part ( a )  corresponds to the case = 1,  where 
the lower stream has zero velocity and part ( b )  to the case U = 3. It can be seen that 
d(ln IA I)/da initially equals the linear growth rate K, but is then very rapidly reduced 
by the nonlinear effects. But rather than continuing to  oscillate about zero, as the 
inviscid solution appears to do, the oscillation of the local growth rate is diminished 
with increasing z and there is a reduction in the bias towards growth, consistently 
with (5.12). This is shown more clearly in figure 3, where In I A I is shown as a function 
of In (h) (with (a )  corresponding to  0 = 1 and (b)  to U = 3). The dashed curves in 
this figure are calculated from the first two terms in the asymptotic solution (5.12). 
The second term was needed to obtain good agreement with the numerical 
computations, which would have been prohibitively expensive to extend much 
further downstream. This figure suggests that  the approach to the ultimate quasi- 
equilibrium state is quite slow [the next-order term in (5.12) varies like ( A z ) ~ ]  and 
that the quasi-equilibrium asymptotic state acts as a kind of attractor for the non- 
equilibrium (growth-dominated) solutions when ha becomes large. 

At a fixed Z, the instability-wave amplitude increases with increasing h, which 
basically means increasing viscosity. This might, a t  first, seem rather surprising, but 
as indicated in the introduction, the instability-wave growth rate is always 
proportional to the phase jump across the critical layer. Nonlinear effects drive the 
phase jump, and consequently the growth rate, toward zero (Gajjar & Smith 1985; 
Goldstein & Durbin 1986; Goldstein et al. 1987; Goldstein & Leib 1988) Viscosity, 
on the other hand, tends to keep the critical-layer phase jump from vanishing and 
thereby causes the final instability wave to increase. 

Figure 4 shows the numerically computed phase variation 0’ versus the scaled 
streamwise coordinate ha, with ( a )  corresponding to  0 = 1 and (b )  to 0 = 3. The 
dashed curves are computed from the first two terms in the asymptotic expansion 

(1 + o”)-:. 
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FIGURE 2. Scaled growth rate of fundamental instability wave as a function of slow streamwise 
distance for various values of the viscous parameter A. Dashed curves : A = 0 (inviscid) and linear 
growth rates. ( a )  = 1; (6) = 3. 
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FIGURE 3. Scaled fundamental instability-wave amplitude as a function of slow streamwise 
distance times the viscous parameter h for various values of h Solid curves numerical solution 
of non-equilibrium vorticity equation. Dashed curves. two-term asymptotic expansion (5.12). 
( a )  r7 = 1 ,  (6) r7 = 3. 
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FIGURE 4. Scaled wavenumber of the instability-wave amplitude 0' = I m  ( - A ' / A )  as a function 
of slow streamwise distance times the viscous parameter h for various values of A. Solid curves: 
numerical solution of non equilibrium vorticity equation. Dashed curves : two-term asymptotic 
expansion (5.13). Dotted curves : leading-order asymptotic result 0;. 

(5.13) and the dotted curves correspond to the first term only. It can be seen that the 
numerical results slowly approach this universal result for all h > 1 .  It is worth 
noting that the Huerre & Scott (1980) result implies that  0' = 0 as AX+ co and is 
therefore not consistent with our numerical computations. 

Figure 5 is a plot of constant-vorticity lines in the ( X ,  7)-plane at various values 
of x for 0 = 1 and h = 0.01. The overall behaviour, in this case, is similar to the 
inviscid case described in I. The contours actually correspond to constant values 
of 

- 452,/1/2Si - 2h(x +xo)  = (y - 2/0) '  + 2Re ( A  eix) - 4 & / I f .  (6.1) 

The first term on the left-hand side is the actual rescaled 0(e)-critical-layer vorticity 
perturbation [cf. ( 3 . 7 ) ,  (3.9)-(3,15)]; the second term is a (now suppressed) change in 
the overall contour level between the different parts of each figure. Figure 6 is the 
same as figure 5 but with the scaled viscous parameter h equal to unity. The initial 
vorticity roll-up is still basically inviscid, but it ultimately departs from this 
behaviour and develops the simpler patterns shown in the last parts of the figure. 
These latter patterns are consistent with the asymptotic solution constructed in 
§ 5 .  
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7. The next stage of evolution 
The progressively increasing local approximation (2.32) to the viscous mean-flow 

change will eventually alter the critical-layer structure and thereby induce an 
O(x,  $/At:) correction to the local instability-wave growth rate, d In At/dx,. Since 
the relatively slow algebraic growth of that wave allows this to occur before the 
instability-wave amplitude becomes O( l ) ,  the critical-layer expansion (3.3) will first 
break down when this correction becomes of the same order of magnitude as the local 
asymptotic instability-wave growth rate, i.e. O( l/x,), see (5.12). This occurs when 
x1 = O ( d ) ,  or, equivalently, when x3 = O(e) (see figure 1 ) .  

The equations have to be rescaled in this next stage of evolution, but the flow 
should still behave linearly in the main part of the shear layer with the nonlinear 
effects again confined to a narrow critical layer, since the instability-wave amplitude 
is still only O(e:). The critical layer now has thickness O(ei) and, as shown below, 
moves across the shear layer in order to remain in the quasi-equilibrium state 
achieved asymptotically in the previous stage. 

The analysis of this next stage of evolution is in many respects similar to that of 
$52 and 5. The expansion in the main part of the shear layer is, to  a large extent, a 
simple reordering of the expansion of $ 2 .  The analysis in $ 5  can be modified to solve 
the relevant critical-layer problems and thus to determine the amplitude and phase 
variations in this stage. 

7.1 .  Expansion in the main part of the shear layer 
The previous discussion suggests that the solution in the main shear layer should now 

i-&@;+$$;+ C : ( A X ~ ) ~ G ( ~ ) ( ? / ) + B % + ~ + . . .  , (7 .1)  

where @, is the basic flow of $ 2 ;  G and 5 are given by (2.33) and (2.16) respectively; 
G(l) and G(') are the y-dependent coefficients in the Taylor-series expansion of the 
basic-flow stream function ; A ,  and 0, are real functions of x2 ; and 

1 xz = @X1 = ex (7.2) 

is a new scaled streamwise coordinate, which is O(1) in the region of interest. 
In  order to ensure that the downstream expansion (7 .1)  matches onto the non- 

equilibrium expansion (2.17) we must require that (cf. (2.27), (3.10), (3.13), (3.15), 

IS, I 02 x2 

2 '  
0, + 

as x 2 + 0 ,  where a ,  and B', are given by (5 .65)  and (5.66). 
The O(ef)-term is now determined by 

(7.3) 

(7.4) 

LY,,+; = - [ 2hx2 ( G"'--G' ; ) 4-02 (-'I: U--2U ) +S,- ;] A ,  sechy s i n i c - y ) ,  

(7.5) 
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where .=Yo is given by (2.23). The solution of (7.5) is 
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where 

0: = a; sech y + b f  (y sech y + sinh y) 
6 

+A,{(a@',+S,) [sechyX,(tanhy)-(y sechy+sinhy) In1 tanhyl] 

- @&, tanhy sinhy}-Ax,A,{2~~~) tanhy sechy+(x1-x4) sechy 
1 

U' + (y sechy+sinhy) [xB-+ sech2 y - i  cosechy sechyX,--=- In1 tanhyl]}, (7.7) 

r+rh y)3 
x1 = 2 sech y cosech y In 

(7.10) 

x4 = jr [y(sech' y + cosech' y) - cosech y sech y] xl(y)  dy. ( 7 . 1 1 )  

The solution @; can only vanish a t  infinity if 

(7.12) 0' - ; + A ,  @l, = Ax,A, x 3 (  !I C O ) ,  

which leads to the O(&jump condition 

0; - b t  = 2A, @', + AX, A ,  [x3( + CO) - x 3 (  - C O ) ] .  (7.13) 

This determines the leading-order velocity- jump condition across the critical 
layer. 

The O($)-term in (7.1), is determined by 

zo$; = -A& sech5 y sinhy c o s [ 2 ( c - y ) ] .  (7.14) 

The solution to (7.14) consists of a mean-flow correction term and a second-harmonic 
term, neither of which play any dynamically significant role in the analysis. 

The O($)-term in (7.1) satisfies 

yo  $g = -A; (-; U--2U ) sechy cos ( c-- @$'))+OT. (7.15) 

where OT denotes out-of-phase terms, i.e. terms proportional t o  sin (5-  @m(xz)/&. 
These latter terms do not play a role in the determination of the amplitude and phase 
to the order of approximation of the analysis and, for simplicity of presentation, are 
therefore ignored in what follows. The solution to (7.15) is then 

(7.16) 
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where 

@g = a$ sech y + 6; ( y  sech y + sinh y) 

+A',{o[(y sech y +sinh y )  In I tanh y I -sech yx,(tanh y)] + tanh y sinh y}. (7.17) 

@g can only vanish a t  infinity if 
bt&A', = 0, (7.18) 

leading to the O(s$ jump condition 

bt-b: = -2A',, (7.19) 

which determines the phase jump across the critical layer to leading order. 
Without going into detail, it  is sufficient to note that the outer expansion is again 

singular at the origin and that a new critical-layer expansion has to be introduced to 
determine the jumps (7.13) and (7.19). 

7.2.  Critical-layer expansion 
Inspection of the singularity occurring in the expansion (7.1) as y --f 0 shows that thc 
critical-layer thickness is now O(&).  We therefore introduce the stretched transverse 
variable - 

Y = y/2 (7.20) 

and note that the inner expansion of the outer solution (7.1) suggests that  the 
critical-layer solution will expand like 

Y = €~2hz ,C ic j~ '+~J (Yo+€~Y~+s~Y~+s~Y~+sJY~ 

+sg Ins Y;L+si Yg+~Y~+s i  Y;+d !Pi...), (7.21) 

where the O(&-term and !Po to YgL are simply re-expansions of the outer (main-region) 
solution. The remaining terms are non-trivial, but only Y; and the out-of-phase part 
of !P+ play a dynamically significant role in determining the instability amplitude and 
phase to lowest order. These two quantities are determined by 

where Y e  denotes the equilibrium critical-layer vorticity operator 

(7.22) 

(7.23) 

(7.24) 

Qi = a2 Y2/aP and Q+ are minus the O(s;)- and minus the out-of-phase component 
of the O(s+xitical-layer vorticity, respectively - note that we are only considering 
the out-of-phase component in (7.23). 

Matching with the outer expansion (7.1) requires that the solutions to  these 
equations satisfy the transverse boundary conditions 

Qi + 2hz,( l / P -  2 c y )  Y ,  (7 2 5 )  

a; + 0, (7.26) 
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as I P I + 00, together with the integral constraints 
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(7.28) 

This boundary-value problem can effectively be converted into the one of $5  by 

x, = <-@,(X,)/€i, (7.29) 

q, = F/A&, (7.30) 

introducing the new variables 

(7.31) 

with Q(e) and Q @  playing the roles of Q(O) and Q@) of 95. We therefore give only the 
final results for the velocity and phase jumps, which are 

(7.32) 

where C(l) and C(3) are given by (5.45) and (5.53), respectively 

7.3. The umplitude and phase behaviour 
Equations (7.32) and (7.33) are easily solved for ALA‘, and 0; to 

AiA’ ,  = -ghat (S,+Ax,f(O)), (7.34) 

where 

0; = -;el,(S,+Ax,f(ti))+2 f (U)+-  , 
A x (  U - :.) (7.35) 

(7.36) 

and am, 8‘,, and D are given by (5.65)-(5.67). It is clear that A ,  and 0, satisfy the 
upstream boundary conditions (7.3) and (7.4). In  fact, the present solution is not too 
different from that of $ 5 .  The new effect comes from the linear terms in Ax, which 
account for the mean-flow divergence. 

7.4. Interpretation of results 
Since Ax, has a positive coefficient in (7.34) (cf. figure 7) while S,  is negative, the 
mean-flow divergence effects eventually drive the growth rate to zero and ultimately 
cause the instability wave to  decay. The present scaling will of course break down 
when the instability amplitude becomes too small, but there is little interest in 
carrying the solution beyond this point. 
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1 2 3 4 5 

0 
FIGURE 7. The functionf(U). The dashed line is the large-U asymptote 8. 

A calculation similar to the one used in obtaining (7 .7)  shows that the (actual) 
linear neutral state is determined by the dispersion relation 

= hx,,(X3(+CO)-xX3(-CO))-22klN, (7.37) 

where k,, denotes the scaled (real) O(&)-wavenumber perturbation a t  the neutral 
point due to the deviation from the hyperbolic-tangent profile (the neutral 
wavenumber is l+&klN)  and x,, denotes the scaled downstream distance (as 
measured from the non equilibrium nonlinear region) to that point. Equating real 
and imaginary parts in (7.37), using (7.10) and (7.36), and eliminating k,,, we 
. .  

obtain 
(7.38) 

which means that the nonlinear region approaches the neutral point as I S ,  I / A  + 0. 
Furthermore, (7.34) and (7.38) show that the neutral stability point (or point of 
maximum amplitude) is still equal to the linear neutral stability point, as has often 
been observed in experiments. It also follows from (7.34) that the maximum 
amplitude E ~ A ~ , , ,  is given by 

€iA,,,, = a, (a). (7.39) 

The result (7.39) is independent of A,  which means that the maximum amplitude is 
independent of the viscosity. 

The total critical-layer vorticity is given by minus 

52 = 1 - € Q X , / O -  €'( 3- + 2A COSX,) + €352: + O(€). (7.40) 

Then, since all terms preceding SZ; satisfy ze52, = 0, i t  follows from (7.22) that the 
critical-layer vorticity equation correct to, but not including, O(6) terms, is 

(7.41) 
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It follows from (2.13), (2.14), and (2.33) that 
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U ,  = O+tanh(y+ef2hx,c in) )+e~2hz ,G~(y)+0(€) ,  (7.42) 

where Go(y)  denotes G(y) with cf“‘ = 0. This shows that e;2hx2cp) can be interpreted 
as a displacement of the origin of the basic hyperbolic-tangent velocity profile. Thus, 
(7.41) explicitly shows that the critical layer is now shifted from the translated origin 
(i.e. the basic-flow inflexion point) by the amount .&(0@1,+S1) (compare this with 
( 3 . 5 ) )  and, consequently, that the slowly varying phase factor 02 maintains the 
quasi-equilibrium state against changes in the mean flow. Finally, it is worth noting 
that, as in the linear case, the nonlinear amplitude and phase are independent of the 
streamline displacement 2h2,cf‘) (see (7.34) and (7.35)). 

8. Concluding remarks 
By incorporating viscous effects into the nonlinear critical-layer analysis of I,  we 

have succeeded in showing how an initially linear instability wave evolves as it 
propagates downstream. The development takes place first through a nonlinear non 
equilibrium critical layer, which gradually ages into a quasi-equilibrium critical layer 
(with variable cat’s-eye vorticity). This, in turn, evolves into a final decaying stage, 
where the instability-wave growth rate is simultaneously affected by mean-flow 
divergence effects and (equilibrium) nonlinear critical-layer effects. The initial 
exponential growth of the linear instability wave is converted into algebraic growth 
in the nonlinear critical-layer region and this algebraic growth is ultimately 
converted into decay in the final stage of evolution. The nonlinear roll-up of the 
vorticity, which is so apparent in flow visualizations, occurs within the nonlinear 
critical-layer region of the present analysis. 

Appendix. Elimination of Stewartson’s singularity 
(The variable cat’s-eye vorticity issue) 

Unlike the Benney & Bergeron (1969) solution, our result has variable vorticity in 
the elosed-streamline region within the cat’s-eye boundary. Benney & Bergeron 
(1969) evoked the Prandtl-Batchelor theorem to argue for constant vorticity but 
that result does not apply here because the rather rapid spatial development does not 
give viscosity time to fully act on the flow. Considerations similar to ours, probably 
led Stewartson (1981) to argue for constant vorticity in the related context of time- 
dependent Rossby-wave critical layers by noting that the solution to the 
Benney-Bergeron problem will exhibit a logarithmic singularity a t  the centre of the 
cat’s-eye (see figure 1) unless the cat’s-eye vorticity is taken to be constant. 

While our problem has variable cat’s-eye vorticity, the final solution turns out to 
be non-singular because the coefficient of co in (5.30), which, as will be shown here, 
turns out to be a singular eigensolution, was eliminated using the generalized 
Prandtl-Batchelor theorem (5.1 1) .  We now show why Stewartson’s (1981) argument 
cannot be used for this purpose. 

To this end, we note that (5.25) and (5.26) show that 
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as 4 + - 2 .  Hence, in view of (5.30), it  follows that 

F(O) N %In ( $ + 2 )  as 4- t -2 .  (A 3) n 

This corresponds to the point X = n: and 7 = 0, i.e. the centre of the cat's-eye. 
However, both coefficients of the operator on the left-hand side of (5.5) go to zero 
there so that the viscous term on the right-hand side can no longer be treated as a 
higher-order term at  the cat's-eye centre. 

To obtain the appropriate equation for this region we introduce the new scaled 
inner variables 

(A 4) 

into (5.5) to obtain 

to lowest order of approximation. Matching the solution with (A 3) leads to the 
boundary condition 

Q - -  2co ln (xz++~) as X Z + V ~ +  co, (A 7) n 
which follows immediately from (5 .8) ,  (A 41, and (A 5). The only other requirement 
is that the solution remain bounded and have continuous derivatives for all 1? 
and q. 

Since (A 6) is clearly parabolic, it  might a t  first glance seem rather strange that its 
solution be required to satisfy a boundary condition of the type (A 7 )  that is imposed 
all around an outer boundary. But since the coefficient of the first derivative with 
respect to 2 changes sign, (A 6) is of the actually of the singular parabolic type 
(Stewartson 1951) and its solution can be expected to exhibit elliptic behaviour. 

We, therefore, borrow a technique from the theory of elliptic partial differential 
equations and introduce the complex variables 

z = X+iq, (A 8)  

z* = X-if, (A 9) 

as new independent variables to obtain 

Then since Q must be real, we seek a solution of the form 

where the asterisk denotes complex conjugation. It follows that F must satisfy 

d2F dF 
__- iZ- = iC, 
dZ2 dZ 

where C is a real constant, since lF(Z)]*  is only a function of Z * .  
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This equation is easily integrated to obtain. 

F = C($rifi p w (A) (2i)s dZ. 

where w denotes the scaled complex error function w(z)  = e-22 erfc ( -  iz), defined on 
p. 297 of Abramowitz & Stegun (1964). Using the asymptotic expansion 7.1.23 on 
p. 298 of Abramowitz & Stegun (1964), we fin9 that 

as Z+m. (A 14) 
O0 im 1 x 3  x ... x (2m-1)  

2mZ2* 

Q will, therefore, satisfy the matching condition (A 5) if 

2c C = -2. 
Tt 

Finally, Q remains bounded and has continuous derivatives of all orders, because w 
is an entire function of Z as can be seen from 7.1.8, p. 297 of Abramowitz & Stegun 
(1964). This shows that Stewartson’s singularity can be removed and that this 
‘singular ’ eigensolution cannot be precluded just because of its logarithmic behaviour 
at the centre of the cat’s eye. 
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